Guide to the ITT Industrial Research Laboratories Electron Tube Research Records

NMAH.AC.0822
Mitch Toda
2004
Table of Contents

Collection Overview .. 1
Administrative Information .. 1
Arrangement ... 3
Scope and Contents .. 3
Biographical / Historical ... 2
Names and Subjects ... 3
Container Listing ... 5
 Series 1: Company Records, 1937 - 1984.. 5
 Series 2: George Papp, 1938 - 1964... 6
 Series 3: Hans W.G. Salinger, 1944 - 1945... 7
 Series 4: Research Records, 1934 - 1969.. 8
 Series 5: Product Information, 1955 - 1979... 10
 Series 6: Photographs.. 11
Collection Overview

Repository: Archives Center, National Museum of American History
Title: ITT Industrial Research Laboratories Electron Tube Research Records
Identifier: NMAH.AC.0822
Date: 1934-1984
Extent: 3.5 Cubic feet (9 boxes, 1 oversize folder)
Creator: Papp, George
International Telephone and Telegraph Corporation
Lott, H.J.
Salinger, Hans W.G.
Hirsch, Robert L.
Farnsworth, Philo Taylor, b. 1906
Information, Technology and Society, Div. of (NMAH, SI).
Cawein, Madison
Essig, Sanford
Eberhardt, Edward

Language: English
Collection is in English.

Administrative Information

Acquisition Information
ITT donated the collection to the Division of Information, Technology & Society, National Museum of American History through Elaine Tuttle, Vice President of Director of Contracts on September 4, 1992. The collection was transferred to the Archives Center on September 13, 2002.

Provenance
The papers were transferred from the Division of Information, Technology and Society (now the Division of Work & Industry) to the Archives Center on September 13, 2002.

Related Materials
130 vacuum tubes, many related to Philo Farnsworth were donated to the Division of Information Technology & Society, National Museum of American History.

Processing Information
Biographical / Historical

The ITT Corporation Industrial Research Laboratories, Electron Tube Division's laboratories in Fort Wayne, Indiana conducted research and product development in the field of special purpose vacuum tubes and sensors. Their history in the research and development of these special purpose devices originated in Fort Wayne in 1939, when Philo T. Farnsworth, the inventor of television, moved there. What brought him there was that his company, Farnsworth Television and Radio Corporation, purchased the Capehart Incorporated plant in Fort Wayne.

Rather than build a plant of their own, Farnsworth Television and Radio Corporation decided to purchase the plant, which had a reputation for building quality phonographs, and retool it to build radio and television receivers. Farnsworth and his engineers' research at the plant lead to the invention of numerous devices, including amplifier tubes, cathode-ray tubes, vacuum tubes, electron multipliers, and photoelectric materials.

The laboratories in Fort Wayne were responsible for developing new technical concepts, methods and designs of tubes, sensors and devices for application in industrial, government and commercial markets. Laboratory activities included applied research, advanced development and product design, and development and fabrication. They concentrated their efforts on designing and developing components which operated in the infrared, visible and ultraviolet portions of the electromagnetic spectrum.

Their various areas of research and development led to a diverse offering of products, including: multiplier phototubes (for stellar observation, star tracking, laser detection, vibration analysis, scintillation counting); vacuum photodiodes (for laser detection, scintillation detection, high speed switching, solar radiation monitoring, interference detection); image dissectors (for slow scan TV systems, slide projector readers, industrial process control, electronic star trackers, electronic scanning spectrometers); electron multipliers (for space research, radiation detection, vacuum monochromators, single particle counting, demountable vacuum systems), image converters (for high-speed photography, infrared viewing and surveillance, optical correlation, pulsed light systems, ultraviolet detection and viewing), correlation devices (for motion compensation, area correlation, map reading, document reading, tracking), and accessories (for focusing magnets, image dissector cameras, focusing and deflection coil assemblies and yokes, phototube holders, power supplies).

The Tube and Sensor Laboratories were world leaders in the areas of photometric quantum detectors, image devices, camera tubes, and optical pattern correlators. Some of their major developments included the Star Tracker sensors used in the Lunar Orbiter Program, Vidissector camera tubes used in several observational satellites, and the cockpit display storage tubes used in the F105 Thunderchief and A4D Skyhawk fighter planes.
They were innovators in developing a number of specialized high vacuum devices including: image dissectors, star tracking dissectors and multiplier phototubes, single quantum counting photomultipliers, grid-controlled photomultipliers, biplanar and laser monitoring photodiodes, windowless electron multipliers and single particle detectors, ultraviolet sensitive photodiodes, image converters, image storage and image correlation tubes, and spectral response information.

Throughout the collection there are numerous names that the laboratories were known as that reflects different stages in the company's development. What follows is a chronology of the names of the laboratories in Fort Wayne, Indiana:

Scope and Contents

This collection contains a diverse selection of materials that address a variety of aspects of the ITT Industrial Laboratories in Fort Wayne, Indiana. There are research and development notebooks from various scientists and engineers, reports and articles on products being developed and research being conducted, technical drawings, a large body of product information, and photographs of products and research projects. People represented in the collection include: George Papp, Hans W.G. Salinger, Philo T. Farnsworth, Madison Cawein, Robert L. Hirsch, Sanford F. Essig, H.J. Lott, and Edward H. Eberhardt. When these materials came to the Archives Center a portion of them were housed in envelopes with captions written on them. The envelopes were photocopied to preserve the information and the contents were incorporated into the above series in order to facilitate intellectual access to the materials.

Arrangement

The collection is divided into six series

Series 1: Company Records, 1937-1984
Series 2: George Papp, 1938-1964
Series 3: Hans W.G. Salinger, 1944-1945
Series 4: Research Records, 1934-1969
Series 6: Photographs, 1960-1965

Names and Subject Terms

This collection is indexed in the online catalog of the Smithsonian Institution under the following terms:
Subjects:
 Electron tubes
 Inventions -- 20th century
 Television
 Vacuum-tubes

Types of Materials:
 Certificates
 Laboratory notes
 Photographs -- 20th century
 Project files
 Technical drawings
 Technical reports
Container Listing

Series 1: Company Records, 1937 - 1984

This series consists of records regarding the company and gives insight into its organization and functions. Included in this series are organizational charts, telephone directories, and memos. The general memos contain information about distribution lists, tube lists, Philo T. Farnsworth, facilities descriptions, and phototube contracts. Other memos discuss the organization of the various departments and employees within the company. The miscellaneous materials contain articles and newspaper clippings about the company, sales figures from 1958-1963, a list of publications regarding ITT photo devices, and press releases. Also in this series are materials that were originally contained in a binder labeled "Obsolete Materials" and two examples of ITT Industrial Laboratories binders.

Box 1, Folder 1	Organizational charts, 1954-1982
Box 1, Folder 2	Memos-Organization of departments and employees, 1963-1983
Box 1, Folder 3	Memos-General, 1961-1981
Box 1, Folder 4	Company name changes, 1964-1984
Box 1, Folder 5	Company summary report, 1962
Box 1, Folder 6	Electro-Optical Products Division summary report, 1973
Box 1, Folder 7	Telephone directories, 1957-1969
Box 1, Folder 8	Newsletters, 1957-1964
Box 1, Folder 9	Philo T. Farnsworth documents regarding his San Francisco laboratory's landmark status, 1974-1981
Box 1, Folder 10	Patent documents, 1937-1952
Box 1, Folder 11	Miscellaneous documents, 1963-1984
Box 2, Folder 1-3	Obsolete materials, 1960-1970

Encompasses the following areas: advertisements, articles, accessories, cathode ray tube, electron multiplier, experiences, newsletters, photodiodes, photomultipliers, proximity focused image converter, uvissector, vidicon, viditron, vacuum tube components, and miscellaneous. Two examples of ITT Industrial Laboratories binders.

Return to Table of Contents
Series 2: George Papp, 1938 - 1964

George Papp was born in Hungary, receiving his bachelor's degree from the University of Szeged and his PhD from the University of Budapest. Papp came to the United States in 1949 and was a research associate at George Washington University working on the development of electron multiplier tubes. In 1952, Papp went to Fort Wayne, Indiana to be work as an engineer at ITT Industrial Laboratories. He would later head the Electron Physics Laboratory and serve as the Technical Advisor to the Storage and Vacuum Tube Development Manager. His experience included the physics and measurement of gamma rays, the oxidation of complex organic metal compounds, secondary electron emission, the physics and application of electromultipliers, high speed coincidence counting technique and circuitry, nuclear instrumentation, tube diodes for microwave detection, image converter tubes, image storage tubes, and infrared detection and imaging.

This series contains materials that were originally in two binders labeled "George Papp." Materials include: correspondence, research notes, reports, curriculum vitae, publications, and proposals. Of note is an address given by Papp at the annual banquet of the Fort Wayne Kiwanis Club celebrating the achievement of the best students of Fort Wayne's high schools in the field of citizenship, May 27, 1958.

Box 3, Folder 1-3 Personal papers, 1940-1964

Box 3, Folder 4 Publications, 1938-1951

Box 3, Folder 5 Report on rectification of diode tubes, 1952

Box 3, Folder 6 Report on HF (High Frequency) power loses in diode tubes, 1952

Box 3, Folder 7 Report on microwave detection with diode tubes, 1952

Box 3, Folder 8 Amendment to research memo with note on signal-to-noise ratio in video detection, 1952

Box 3, Folder 9 Report on microwave rectification in diode tubes and related materials, 1952-1960

Return to Table of Contents
Series 3: Hans W.G. Salinger, 1944 - 1945

Hans W.G. Salinger joined ITT Industrial Laboratories in 1936. In his career with the company he was a research engineer, Head of the Radar Department, Acting Director of the Components and Instrumentation Laboratory, and Scientific Advisor to the Laboratory Director of ITT Industrial Laboratories Division. Salinger received his PhD from the University of Berlin and was awarded 19 patents. His experience included development work associated with circuit theory, acoustics, magnetic materials, electron optics and ballistics, wave filters, research and development on submarine cables, telegraphy, analog computers for fire control, photomultipliers, and infrared systems.

This series contains materials that were originally in a binder labeled "H. Salinger." It includes his reports and notes regarding the Omegatron, magnetic focusing in image tubes, picture quality in electrostatic dissectors, photometric units, and image tubes.

Box 3, Folder 10-11 Reports and notes, 1944-1945
Series 4: Research Records, 1934 - 1969

Contained within this series are the research and development notebooks of Madison Cawein, Hans W.G. Salinger, Sanford F. Essig, Edward H. Eberhardt, and H.J. Lott. Also included are official research memos (memos intended for release outside of the company), correspondence, memos, notes, reports, and technical drawings. Of interest are Sanford F. Essig's notes and photographs from his dusting machine and film evaporation experiments from 1938.

<table>
<thead>
<tr>
<th>Box 4, Folder 1</th>
<th>Farnsworth Television & Radio Corporation, research and development notebook no. 7, Madison Cawein, 1942-1945</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 4, Folder 2</td>
<td>Farnsworth Television & Radio Corporation, research and development notebook no. 56, Hans W.G. Salinger, 1943</td>
</tr>
<tr>
<td>Box 4, Folder 3</td>
<td>Farnsworth Television & Radio Corporation, research and development notebook no. 317, Sanford F. Essig, 1947-1959</td>
</tr>
<tr>
<td>Box 4, Folder 4</td>
<td>Farnsworth Television & Radio Corporation, research and development notebook no. 6788, Sanford F. Essig, 1958-1960</td>
</tr>
<tr>
<td>Box 4, Folder 5</td>
<td>Multiplier work, notebook no. 1, Edward H. Eberhardt, 1959</td>
</tr>
<tr>
<td>Box 4, Folder 6</td>
<td>Photomultiplier development, notebook no. 2, Edward H. Eberhardt, 1959</td>
</tr>
<tr>
<td>Box 4, Folder 7</td>
<td>Multipliers, notebook no. 3, Edward H. Eberhardt, 1959</td>
</tr>
<tr>
<td>Box 4, Folder 8</td>
<td>Photomultipliers, notebook no. 4, Edward H. Eberhardt, 1959</td>
</tr>
<tr>
<td>Box 5, Folder 1</td>
<td>Notebook, Project 4900, H.J. Lott, 1954-1955</td>
</tr>
<tr>
<td>Box 5, Folder 2</td>
<td>Notebook, Work on demountable system, Edward H. Eberhardt, 1955-1957</td>
</tr>
<tr>
<td>Box 5, Folder 3</td>
<td>Notebook, New methods in IR detection, Edward H. Eberhardt, 1959</td>
</tr>
<tr>
<td>Box 5, Folder 4</td>
<td>Specifications, IC 6A image tube, 1947-1957</td>
</tr>
<tr>
<td>Box 5, Folder 5</td>
<td>Specifications, IC-16-3 image tube, 1947-1959</td>
</tr>
<tr>
<td>Box 5, Folder 6</td>
<td>Sanford F. Essig notes on dusting machine and film evaporation experiments, 1938</td>
</tr>
<tr>
<td>Box 5, Folder 7</td>
<td>Photographs from Sanford F. Essig's dusting machine and film evaporation experiments, 1938</td>
</tr>
<tr>
<td>Box 5, Folder 8</td>
<td>Report-Recording Microdensitometer for Analysis of Line and Continuous Spectra, 1934</td>
</tr>
</tbody>
</table>
Box 5, Folder 9 Report-Project #2017, Semi-Conducting Camera Tube, 1941

Box 5, Folder 10 Report-Lusters: Their Characteristics & Limitations in Vacuum Tube Applications, 1945

Box 5, Folder 11 Report-Unipotential Image Tube IC6, 1949

Box 5, Folder 12 Report-High Voltage Image Tube, 1949

Box 5, Folder 13 Report-Cold Weld Vacuum Chamber History, 1960

Box 5, Folder 14 Report-Selected Topics in the Inertial Confinement of Ionized Gases, 1967

Box 6, Folder 1 Official research memos, 1959-1966

Box 6, Folder 2 Research correspondence and memos, 1937-1972

Box 6, Folder 3 Spectral response documents, 1964-1969

Box 6, Folder 4 Miscellaneous research notes, 1937-1961

Box 6, Folder 5 Examples of drawing labels, 1946-1959

Box 6, Folder 6 General technical drawings, 1949-1969

Map-folder 1 Technical drawings of theta orthicon tube and parts, 1943-1948

Return to Table of Contents

This series represents a large body of material containing information about products produced by ITT Industrial Laboratories. There are application and technical notes which were created by ITT to help their customers in understanding how their products work and how they can perform in a variety of applications, in addition to numerous items of trade literature, brochures, advertisements, price lists, and tube lists.

Box 6, Folder 7 Index to application notes and technical notes, undated
Box 6, Folder 8 Application notes, 1970-1979
Box 6, Folder 9 Technical notes, 1966-1975
Box 7, Folder 1-2 Tubes, 1959-1968
Box 7, Folder 3 Infrared, 1961-1963
Box 7, Folder 4 Instrumentation, 1960-1963
Box 7, Folder 5 Videx, 1962-1963
Box 7, Folder 6-7 Brochures, 1955-1971
Box 7, Folder 8 Advertisements, 1962-1972
Box 7, Folder 9 Price lists, 1961-1970
Box 7, Folder 10 Tube lists, 1962-1969
Box 7, Folder 11 Miscellaneous, 1963-1970

Return to Table of Contents
Series 6: Photographs

The photographs in this series include images of products, laboratories, research projects, and drawings for trade literature.

Box 8, Folder 1 General, includes photos of a vacuum compton detector, an electrostatic vidicon, a UV photometer display unit, an electronic scanning spectrometer, and other electron tubes and laboratory equipment (33 photographs), 1960

Box 8, Folder 2 Image dissectors, includes photos of 1" and 1-½" vidissector and 4-½" image dissector, undated

4 Photographs

Box 8, Folder 3 Electron multipliers, includes photos of standard and ruggedized versions, undated

12 Photographs

Box 8, Folder 4 Multiplier phototubes, includes photos of startracker tube, ruggedized startracker tube, ruggedized startracker tube-potted, high temperature design multiplier phototube, high current-fast response design multiplier phototube, and a quadruple multiplier phototube, undated

25 Photographs

Box 8, Folder 5 Image converters, includes photos of electrostatic image converters, a proximity image converter, a storage image tube, and an image converter-fiber optic output, undated

14 Photographs

Box 8, Folder 6 Photodiodes, includes photos of a biplanar photodiode, a biplanar photodiode-flush faceplate, ¾" and 7" biplanar photodiodes, triplanar photodiodes, a photodiode holder (tube in place), and developmental high current photodiodes, undated

17 Photographs

Box 8, Folder 7 Storage Tubes, includes photos of a 7" Iatron-Loral Version, multimode Iatrons, a barrier-grid tube, and Gilfillan Iatrons, undated

12 Photographs

Box 9, Folder 1 Instrumentation, includes photos of various video equipment, an electronic scanning spectrometer, a Corning flaw detector, a Corning lens inspector, a camera pad amplifier, and a multiple access computer (27 photographs), 1960

12 Undetermined

Box 9, Folder 2 Videx, includes photos of various configurations of the Videx system (26 photographs), 1965

12 Undetermined

Box 9, Folder 3 Laboratory project, 5032-B-15.97, captions from photographs are as follows, undated
12 Undetermined

Box 9, Folder 4 Laboratory project, 10-12-60C, operating image transducer (8 photographs), 1960
12 Undetermined

Box 9, Folder 3 Laboratories, includes various interior laboratory views (9 photographs), undated
12 Undetermined

Box 9, Folder 4 Color photographs, includes photos from publications and of various electron tubes (15 photographs), undated
12 Undetermined

Box 9, Folder 5 Drawings for trade literature, captions from photographs
12 Undetermined

Return to Table of Contents